
ar
X

iv
:1

20
8.

62
05

v1
  [

nl
in

.C
D

] 
 3

0 
A

ug
 2

01
2

Correlational properties of two-dimensional

solvable chaos on the unit circle

Aki-Hiro Sato and Ken Umeno

Department of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University,

Yoshida-Honcho, Sakyo-ku, 606-8501, Kyoto JAPAN

Abstract

This article investigates correlational properties of two-dimensional

chaotic maps on the unit circle. We give analytical forms of higher-order

covariances. We derive the characteristic function of their simultaneous

and lagged ergodic densities. We found that these characteristic functions

are described by three types of two-dimensional Bessel functions. Higher-

order covariances between x and y and those between y and y show non-

positive values. Asymmetric features between cosine and sine functions

are elucidated.

1 Introduction

Knowledge on solvable chaos is useful for designing random number genera-
tors [1, 2, 3, 4] and Monte Carlo integration [5]. The idea of applying chaos
theory to randomness has produced important works recently [6, 7, 8, 9]. Geisel
and Fairen analyzed statistical properties of Chebyshev maps [10]. They showed
the mixing properties and higher order moments with higher-order characteris-
tic functions. González and Pino proposed a pseudo random number generator
based on logistic maps [11]. Collins et al. [12] have applied the logit transforma-
tion to the logistic map variable for producing a sequence with a near Gaussian
distribution. These solvable chaotic properties enable us to design and employ
chaos for application purposes.

First, let us consider maps in the form of Chebyshev polynomials of degree
k

xt+1 = Tk(tt), (1)

which map the interval [−1, 1] onto the same interval. The first few polynomials
are explicitly T1(x) = x, T2(x) = 2x2 − 1, and T3(x) = 4x3 − 3x. Since, there is
permutability of the Chebyshev polynomials, Tk(Tl(x)) = Tkl(x), Eq. (1) can
be expressed as

xt = Tkt(x0). (2)
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It was shown by Adler and Rivlin that Chebyshev maps with k ≥ 2 are er-
godic and strongly mixing. This map dynamics has the invariant measure

µ(dx) = dx
π
√
1−x2

. Geisel and Fairen shows that the characteristic function of

the Chebyshev maps can be expressed as Bessel function [10]. They further
considered the higher-order characteristic function. Following their strategy, we
consider the characteristic function of two-dimensional solvable chaotic maps
on a unit circle. We further calculate the higher-order covariance based on the
characteristic function.

This article is organized as follows. In Sec. 2, we introduce two-dimensional
chaotic maps on a unit circle. In Sec. 3, we show that simultaneous covariance
among two variables is independent. In Sec. 4, we derive an analytical form
of higher-order covariance among two variables. In Sec. 5, we compute higher-
order covariance among two variables with lags. Sec. 6 is devoted to concluding
remarks.

2 Two-dimensional solvable chaos

In this article, we consider two-dimensional maps on a unit circle. Suppose that
zt = xt +

√
−1yt denotes a complex number, where xt is a real number and

yt is an imaginary part at step t (t = 0, 1, . . .). Then, we define the complex
dynamics as

zt+1 = zkt , (3)

where k is an integer. We can also express Eq. (3) as

{
xt+1 = Pk(xt, yt)
yt+1 = Qk(xt, yt)

, (4)

where Pk(x, y) and Qk(x, y) are defined as

(x+
√
−1y)k = Pk(x, y) +

√
−1Qk(x, y), (5)

x2 + y2 = 1. (6)

The first few polynomials are explicitly given by P1(x, y) = x, Q1(x, y) = y,
P2(x, y) = x2 − y2, Q2(x, y) = 2xy, P3(x, y) = x3 − 3xy2, Q3(x, y) = 3x2y− y3,
P4(x, y) = x4 − 6x2y2 + y4, Q4(x, y) = 4x3y − 4xy3, P5(x, y) = x5 − 10x3y2 +
5xy4, Q5(x, y) = 5x4y − 10x2y3 + y5, P6(x, y) = x6 − 15x4y2 + 15x2y4 − y6,
Q6(x, y) = 6x5y − 20x3y3 + 6xy5, P7(x, y) = x7 − 21x5y2 + 35x3y4 − 7xy6, and
Q7(x, y) = 7x6y − 35x4y3 + 21x2y5 − x7.

In general, Pk(x,±
√
1− x2) = Tk(x) is satisfied. Specifically, Qk(x, y) for

odd ordered k is equivalent to Qk(±
√

1− y2, y) = −Tk(y).
If we set an initial condition z0 = x0 +

√
−1y0 on the unit circle |z0| = 1, zt

is also mapped on the unit circle. In this case, Eq. (5) can be rewritten as

exp(
√
−1θ)k = exp(kθ

√
−1), (7)
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where θ denotes the argument of (x, y) on the two-dimensional plane. It is
convenient to represent the polynomial Pk(x, y) and Qk(x, y) in the form

{
Pk(cos θ, sin θ) = cos(kθ)
Qk(cos θ, sin θ) = sin(kθ)

(8)

Fig. 1 shows a trajectory of (xt, yt) for k = 2. The value at each step stands on
the unit circle.
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Figure 1: 800 steps of a trajectory of the two-dimensional chaotic map for k = 2.
The initial value is given by (x0, y0) = (−0.820000, 0.572364).

By introducing θt as the argument of zt, we have

θt+1 = kθt. (9)

The solution of Eq. (9) can be written as

θt = ktθ0, (10)

by using θ0, denoted as the argument of z0. Therefore, zt = xt +
√
−1yt is

rewritten as

zt = cos(ktθ0) +
√
−1 sin(ktθ0) = exp(ktθ0

√
−1). (11)

Eq. (10) is ergodic and has the constant invariant density ρΘ(θ) =
1
2π (0 ≤

θ ≤ 2π) since Eq. (9) is a Bernoulli map on mod 2π.
Transforming the orthogonal coordinate (x, y) into the polar coordinate (r, θ)

by x = r cos θ and y = r sin θ, we have ρR(r) = δ(r − 1). Therefore, the joint
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invariant density of x and y can be described as

ρXY (x, y) = ρΘ(θ)ρR(r)
∣
∣
∣
∂(θ, r)

∂(x, y)

∣
∣
∣ =

δ(
√

x2 + y2 − 1)

2π
√

x2 + y2
, (12)

where δ(·) represents Dirac’s δ-function. The marginal density in terms of x is
given by

ρX(x) =

∫ 1

−1

ρXY (x, y)dy

=
1

2π

∫ 1

−1

δ(
√

x2 + y2 − 1)
√

x2 + y2
dy

=
1

π

∫
√
x2+1−1

|x|−1

δ(t)
√

(t+ 1)2 − x2
dt

=
1

π
√
1− x2

.

In the same way, we obtain

ρY (y) =

∫ 1

−1

ρXY (x, y)dx =
1

π
√

1− y2
. (13)

Note that ρX(x) and ρY (y) are the same as the ergodic density of the Chebyshev
maps.

3 Simultaneous covariance

Next, let us consider auto-correlations of x and y and cross-correlation between
x and y. Obviously, mean values of x and y are given as zero.

lim
T→∞

1

T

T−1∑

t=0

xt =

∫ 1

−1

xρX(x)dx =

∫ 1

−1

x

π
√
1− x2

dx = 0, (14)

lim
T→∞

1

T

T−1∑

t=0

yt =

∫ 1

−1

yρY (y)dy =

∫ 1

−1

y

π
√

1− y2
dy = 0. (15)

We shall introduce four types of correlations:

cXX(τ) = lim
T→∞

1

T

T−1∑

t=0

xtxt+τ =

∫ 1

−1

dx

∫ 1

−1

dyxPk ◦ · · · ◦ Pk
︸ ︷︷ ︸

τ

(x, y)ρXY (x, y)

(16)

cY Y (τ) = lim
T→∞

1

T

T−1∑

t=0

ytyt+τ =

∫ 1

−1

dx

∫ 1

−1

dyy Qk ◦ · · · ◦Qk
︸ ︷︷ ︸

τ

(x, y)ρXY (x, y)
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(17)

cXY (τ) = lim
T→∞

1

T

T−1∑

t=0

xtyt+τ =

∫ 1

−1

dx

∫ 1

−1

dyxQk ◦ · · · ◦Qk
︸ ︷︷ ︸

τ

(x, y)ρXY (x, y)

(18)

cYX(τ) = lim
T→∞

1

T

T−1∑

t=0

ytxt+τ =

∫ 1

−1

dx

∫ 1

−1

dyy Pk ◦ · · · ◦ Pk
︸ ︷︷ ︸

τ

(x, y)ρXY (x, y)

(19)

Transforming the orthogonal coordinate (x, y) into the polar coordinate
(r, θ), we can calculate Eqs. (16) to (19) as

cXX(τ) =
1

2π

∫ 2π

0

cos θ cos kτθdθ =
1

2
δ1,kτ (20)

cY Y (τ) =
1

2π

∫ 2π

0

sin θ sin kτθdθ =
1

2
δ1,kτ (21)

cXY (τ) =
1

2π

∫ 2π

0

cos θ sin kτθdθ = 0 (22)

cYX(τ) =
1

2π

∫ 2π

0

sin θ cos kτθdθ = 0 (23)

These are extensions of Chebyshev maps derived by Geisel and Fairen to the
two-dimensional map [10]. Therefore, the auto-correlations of x and y decay 0
for τ ≥ 1, and the cross-correlations between x and y are zero. Furthermore, the
correlation between zt and zt+τ , where · is denoted as the complex conjugate of
·, is also zero,

lim
T→∞

1

T

T−1∑

t=0

ztzt+τ = cXX(τ) − cY Y (τ) +
√
−1

(
cXY (τ) + cYX(τ)

)
= 0. (24)

Note that Eqs. (20) to (23) are derived by means of the permutability of zk

and the orthogonality between Pk(x, y) and Qk(x, y). Clearly, from Eq. (3) we
can prove the permutability of zk such as (zk)l = zkl. For k ≥ 1 and l ≥ 1, we
also have the orthogonal relations among Pk(x, y) and Qk(x, y)
∫ 1

−1

dx

∫ 1

−1

dyPk(x, y)Pl(x, y)ρXY (x, y) =
1

2π

∫ 2π

0

cos(kθ) cos(lθ)dθ =
1

2
δk,l,

(25)
∫ 1

−1

dx

∫ 1

−1

dyQk(x, y)Ql(x, y)ρXY (x, y) =
1

2π

∫ 2π

0

sin(kθ) sin(lθ)dθ =
1

2
δk,l,

(26)
∫ 1

−1

dx

∫ 1

−1

dyQk(x, y)Pl(x, y)ρXY (x, y) =
1

2π

∫ 2π

0

sin(kθ) cos(lθ)dθ = 0

(27)
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4 Simultaneous higher order covariance

Let us consider the characteristic function of the simultaneous joint density
ρXY (x, y), defined as

Φ(u, v) = lim
T→∞

1

T

T−1∑

t=0

e
√
−1(uxt+vyt)

=

∫ ∞

−∞

∫ ∞

−∞
e
√
−1(ux+vy)ρXY (x, y)dxdy. (28)

Inserting Eq. (12) into Eq. (28), we have

Φ(u, v) =
1

2π

∫ ∞

−∞
e
√
−1(ux+vy) δ(

√

x2 + y2 − 1)
√

x2 + y2
dxdy

=

∫ 2π

0

dθ

∫ ∞

0

rdre
√
−1(u cos θ+v sin θ) δ(r − 1)

2πr

=
1

2π

∫ 2π

0

e
√
−1(u cos θ+v sin θ)dθ = J1,1

0 (u, v), (29)

where Jp,q
n (u, v) is defined as

Jp,q
n (u, v) =

1

2π

∫ 2π

0

e
√
−1(u cos(pθ)+v sin(qθ)−nθ)dθ. (30)

This is similar to the two-dimensional Bessel function which was studied by
Korsch et al. [13], however, it is a bit different from it. They define the two-
dimensional Bessel functions with three integer indices n, p, and q as

Ĵp,q
n (u, v) =

1

2π

∫ π

−π

e
√
−1(u sin(pθ)+u sin(qθ)−nθ)dθ (31)

In his definition, the two-dimensional Bessel function consists of two sine func-
tions. However, in our definition this consists of cosine and sine functions.

Clearly, both the two-dimensional Bessel functions satisfy

J1,1
0 (u, 0) = J0(u), J1,1

0 (0, v) = J0(v), (32)

Ĵ1,1
0 (u, 0) = J0(u), Ĵ1,1

0 (0, v) = J0(v), (33)

where Jn(u) is the Bessel function defined as

Jn(u) =
1

2π

∫ π

−π

e
√
−1(nθ−u sin θ)dθ. (34)

In the one-dimensional case, Eq. (29) is equivalent to the characteristic
function of Chebyshev polynomials, which is derived by Geisel and Fairen [10].
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We can further expand Φ(u, v) in terms of u and v,

Φ(u, v) =
1

2π

∞∑

n=0

(
√
−1)n

n!

∫ 2π

0

(u cos θ + v sin θ)ndθ

=
1

2π

∞∑

n=0

(
√
−1)n

n!

n∑

m=0

(
n
m

)

umvn−m

∫ 2π

0

cosm θ sinn−m θdθ.

Therefore, we have

〈XmY n−m〉 = lim
T→∞

1

T

T−1∑

t=0

xm
t yn−m

t

=

∫ ∞

−∞
dx

∫ ∞

−∞
dyxmyn−mρXY (x, y)

=
1

2π

∫ 2π

0

cosm θ sinn−m θdθ. (0 ≤ m ≤ n). (35)

We also have the equality

∫ π/2

0

cos2p−1 θ sin2q−1 θdθ =
1

2
B(p, q) =

1

2

Γ(p)Γ(q)

Γ(p+ q)
, (36)

where B(a, b) denotes the beta function, defined as

B(a, b) =

∫ 1

0

τa−1(1− τ)b−1dτ, (37)

and Γ(a) represents the gamma function, defined as

Γ(a) =

∫ ∞

0

e−ττa−1dτ. (38)

Inserting Eq. (36) into p = m/2 + 1/2 and q = (n − m)/2 + 1/2 and using
symmetry of cosine and sine functions and Γ(n+ 1) = n!, we obtain

〈XmY n−m〉 =
{

2Γ(n−m+1

2
)Γ(m+1

2
)

2πΓ(n
2
+1) = (m−1)!!(n−m−1)!!

n!! (n,m : even)

0 (otherwise)
. (39)

Hence, the characteristic function of ρXY (x, y) is described as

Φ(u, v) =
∞∑

n=0

(−1)n
n∑

m=0

(u2)m(v2)n−m

(2m)!!(2n− 2m)!!(2n)!!
. (40)

This is a natural extension of the Bessel function of degree 0 to the two-
dimensional case,

J0(z) =
∞∑

r=0

(−z2)r

(2r)!!(2r)!!
. (41)
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Since we can further calculate the m-th order moment of xt and the n−m-th
order moment of yt as

〈Xm〉 =

∫ 1

−1

dx

∫ 1

−1

dyxmρXY (x, y)

=
1

2π

∫ 2π

0

cosm θdθ =

{
(m−1)!!

m!! (m : even)
0 (m : odd)

, (42)

and

〈Y n−m〉 =

∫ 1

−1

dx

∫ 1

−1

dyyn−mρXY (x, y)

=
1

2π

∫ 2π

0

sinn−m θdθ =

{
(n−m−1)!!
(n−m)!! (n−m : even)

0 (n−m : odd)
, (43)

where m!! = 2 · 4 · 6 · · ·m for even m and m!! = 1 · 3 · 5 · · ·m for odd m, we get

Cov[Xm, Y n−m] = 〈XmY n−m〉 − 〈Xm〉〈Y n−m〉

=

{
(m−1)!!(n−m−1)!!

n!!

[

1− n!!
m!!(n−m)!!

]

(m,n : even)

0 (otherwise)
(44)

Here, we consider the negativity of even ordered moments. Hammersley sug-
gested that antithetic variables are effective for variance reduction in Monte
Carlo integrations [14]. The antithetic-variates method permits estimates through
the use of negative correlated random variables faster than independent random
variables. Let us confirm the sign of Eq. (44). We get

1− n!!

m!!(n−m)!!
= 1− (n2 )!

(m2 )!(
n−m

2 )!

= 1−
(

n
2
m
2

)

≤ 0, (45)

since from the definition of combination, we have

(
n
2
m
2

)

=
(n2 )!

(m2 )!(
n−m

2 )!
≥ 1. (46)

The equality is satisfied if and only if m = 0 or m = n. Note that Eq. (44) is
independent of a value of k.

Therefore, Eq. (44) implies that xt and yt do not have any correlations for
the odd-ordered moments, however, do have a negative covariance for the even-
ordered moments. Fig. 2 shows the relationship between n and Cov[Xm, Y n−m].
It is confirmed that the covariance monotonically increases and approaches to
zero as n increasing.
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Furthermore, we calculate covariance between xm
t and xn−m

t , and between
ymt and yn−m

t . From Eqs. (42) and (43), we have

Cov[Xm, Xn−m] = Cov[Y m, Y n−m]

=







1
2n

[(
n
n
2

)

−
(

m
m
2

)(
n−m
n−m

2

)]

≥ 0 (n,m : even)

0 (otherwise)
.

(47)

The non-negativity of Eq. (47) is proven as follows. Let us consider the case
that n is even. From

(1 + x)n =
{

(1 + x)
n

2

}2

, (48)

one has
n∑

m=0

(
n
m

)

xm =
(

n
2∑

m=0

(
n
2
m

)

xm
)2

(49)

Comparing xm’s coefficient, we get the following inequality

(
n
m

)

≥
(

n
2
m
2

)2

. (50)

Therefore, we obtain

1

2n

[( n
n
2

)

−
(

m
m
2

)(
n−m
n−m

2

)]

=
1

2n

(
n
n
2

)

(
n
m

)

[( n
m

)

−
(

n
2
m
2

)2]

≥ 0.

(51)

5 Higher order covariance with lags

More generally, we can introduce a characteristic function of the joint density
between xm

t+p and yn−m
t+q .

ΨXY (u, v) = lim
T→∞

1

T

T−1∑

t=0

e
√
−1(uxt+p+vyt+q)

=
〈

exp
(√

−1(uPk ◦ · · · ◦ Pk
︸ ︷︷ ︸

p

(x, y) + v Qk ◦ · · · ◦Qk
︸ ︷︷ ︸

q

(x, y))
)〉

=

∫ 1

−1

dx

∫ 1

−1

dy exp
(√

−1(uPk ◦ · · · ◦ Pk
︸ ︷︷ ︸

p

(x, y) + v Qk ◦ · · · ◦Qk
︸ ︷︷ ︸

q

(x, y))
)
ρXY (x, y)

=
1

2π

∫ 2π

0

e
√
−1(u cos(kpθ)+v sin(kqθ))dθ = Jkp,kq

0 (u, v). (52)
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Figure 2: The relationship between n and Cov[Xm, Y n−m] for k = 2.

Similarly to Φ(u, v), from the expansion in terms of u and v, we obtain

lim
T→∞

1

T

T−1∑

t=0

xm
t+py

n−m
t+q =

∫ 1

−1

dx

∫ 1

−1

dy Pk ◦ · · · ◦ Pk
︸ ︷︷ ︸

p

(x, y)Qk ◦ · · · ◦Qk
︸ ︷︷ ︸

q

(x, y)ρXY (x, y)

=
1

2π

∫ 2π

0

cosm(kpθ) sinn−m(kqθ)dθ. (53)

By using

cosm(kpθ) sinn−m(kqθ)

=
1

2m
(e

√
−1kpθ + e−

√
−1kpθ)m

1

(2
√
−1)n−m

(e
√
−1kqθ − e−

√
−1kqθ)n−m

=
1

2n(
√
−1)n−m

m∑

r=0

n−m∑

s=0

(−1)n−m−s m!

r!(m − r)!

(n−m)!

s!(n−m− s)!
e
√
−1[(2r−m)kp+(2s−n+m)kq ]θ,

(54)

and
1

2π

∫ 2π

0

e
√
−1αθdθ = δ0,α, (55)

we obtain

lim
T→∞

1

T

T−1∑

t=0

xm
t+py

n−m
t+q

10



=







(−1)
n−m

2

2n

∑m
r=0

∑n−m
s=0

m!
r!(m−r)!

(n−m)!
s!(n−m−s)! (−1)−sδ0,(2r−m)kp+(2s−n+m)kq

(m,n : even)
0 (otherwise)

.

(56)

Since we further have

〈Xm
t+p〉 =

∫ 1

−1

dx

∫ 1

−1

dy
[

Pk ◦ · · · ◦ Pk
︸ ︷︷ ︸

p

(x, y)
]m

ρXY (x, y)

=
1

2π

∫ 2π

0

cosm(kpθ)dθ

=

{
(m−1)!!

m!! (m : even)
0 (m : odd)

, (57)

and

〈Y n−m
t+q 〉 =

∫ 1

−1

dx

∫ 1

−1

dy
[

Qk ◦ · · · ◦Qk
︸ ︷︷ ︸

q

(x, y)
]n−m

ρXY (x, y)

=
1

2π

∫ 2π

0

cosn−m(kqθ)dθ

=

{
(n−m−1)!!
(n−m)!! (n−m : even)

0 (n−m : odd)
, (58)

we get

Cov[Xm
t+p, Y

n−m
t+q ] = 〈Xm

t+pY
n−m
t+q 〉 − 〈Xm

t+p〉〈Y n−m
t+q 〉

=







(−1)
n−m

2

2n

∑m
r=0

∑n−m
s=0

(
m
r

)(
n−m

s

)

(−1)−sδ0,(2r−m)kp+(2s−n+m)kq

− (m−1)!!(n−m−1)!!
m!!(n−m)!! (m,n : even)

0 (otherwise)

.

(59)

Kohda et al. showed that the higher-order covariance of Chebyshev maps have
no correlation [15]. We use their derivation in our case. According to Kac’s
statistical independence [16] when in Eq. (59)

(2r −m)kp + (2s− n+m)kq = 0, (0 ≤ r ≤ m; 0 ≤ s ≤ n−m) (60)

holds for any kp and kq if and only if r = m/2 and s = (n −m)/2, kp and kq

are called linearly independent. Then xm
t+p and yn−m

t+q are statistically indepen-
dent [15].

Let consider the case that m and n are even. From elementary facts about
the theory of numbers, we know that

N = ke + r (0 ≤ r < k), (61)
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where N is a natural number, and k, e and r are non-negative integers. In the
case that 2r −m > 0, 2s− n+m < 0, and p < q we have

(2r −m)kp + (2s− n+m)kq = {(2r −m) + (2s− n+m)kq−p}kp

= {(ke1 + r′)− (ke2 + s′)kq−p}kp

= (ke1 + r′ − ke2+q−p − s′kq−p)kp. (62)

Therefore, if [(2r −m)/k] = 0, [(2s− n+m)/k] = 0, and e1 = e2 + q − p hold
then (2r − m)kp + (2s − n + m)kq = 0 is satisfied for integers r and s other
than r = m/2 and s = (n − m)/2. When m > k, and n − m > k, we have
[(2r−m)/k] = 0 and [(2s−n+m)/k] = 0. Therefore, m ≥ ke1 and n−m ≥ ke2

would be satisfied. Namely, when n < ke1 + ke2 = ke2(kq−p + 1), xm
t+p and

yn−m
t+q are statistically independent. This implies that q − p goes infinity, xm

t+p

and yn−m
t+q become statistically independent in an exponential manner.

Fig. 3 shows Cov[Xm
t+p, Y

n−m
t+q ] for (p, q) = (0, 1), (0, 2), (0, 3), (0, 4), (0, 5),

and (0, 6). As shown in figures, we found that the covariances decrease as |p−q|
increasing. The range of the covariances approach to zero as q increasing.

Obviously, Eq. (60) has solutions r = m/2 and s = (n − m)/2. A sum of
the contributions for r = m/2 and s = (n −m)/2 in Eq. (71) is equivalent to
(m−1)!!(n−m−1)!!

m!!(n−m)!! . Since Cov[Xm
t+p, Y

n−m
t+q ] is less than zero from the numerical

simulation, for solutions other than r = m/2 and s = (n −m)/2 of Eq. (60),
it should satisfy that a sum of negative contributions is greater than a sum of
positive contributions.

We may consider two types of second-order characteristic functions with lags.
Note that Geisel and Fairen [10] considered a similar second-order characteristic
function for the Chebyshev maps. Their characteristic function corresponds to
ΨXX(u, u) in our definition.

ΨXX(u, v) = lim
T→∞

1

T

T−1∑

t=0

e
√
−1(uxt+p+vxt+q)

=
1

2π

∫ 2π

0

e
√
−1(u cos(kpθ)+v cos(kqθ))dθ (63)

ΨY Y (u, v) = lim
T→∞

1

T

T−1∑

t=0

e
√
−1(uyt+p+vyt+q)

=
1

2π

∫ 2π

0

e
√
−1(u sin(kpθ)+v sin(kqθ))dθ (64)

Similarly to ΨXY (u, v), from the expansion in terms of u and v, we obtain

ΨXX(u, v) =

∞∑

n=0

(−1)
n

2

n!

n∑

m=0

(
n
m

)

〈Xm
t+pX

n−m
t+q 〉umvn−m, (65)

ΨY Y (u, v) =
∞∑

n=0

(−1)
n
2

n!

n∑

m=0

(
n
m

)

〈Y m
t+pY

n−m
t+q 〉umvn−m, (66)
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Figure 3: Scatter plots of Cov[Xm
t+p, Y

n−m
t+q ] in terms of n (0 ≤ m ≤ n) at

k = 2 and p = 0, (a) q = 1, (b) q = 2, (c) q = 3, (d) q = 4, (e) q = 5, and
(f) q = 6. Filled squares represent theoretical values, and filled circles values
obtained from numerical integration.

where

〈Xm
t+pX

n−m
t+q 〉 = lim

T→∞

1

T

T−1∑

t=0

xm
t+px

n−m
t+q =

1

2π

∫ 2π

0

cosm(kpθ) cosn−m(kqθ)dθ,

〈Y m
t+pY

n−m
y+q 〉 = lim

T→∞

1

T

T−1∑

t=0

ymt+py
n−m
t+q =

1

2π

∫ 2π

0

sinm(kpθ) sinn−m(kqθ)dθ.
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By using

cosm(kpθ) cosn−m(kqθ)

=
1

2m
(e

√
−1kpθ + e−

√
−1kpθ)m

1

2n−m
(e

√
−1kqθ + e−

√
−1kqθ)n−m

=
1

2n

m∑

r=0

n−m∑

s=0

m!

r!(m − r)!

(n−m)!

s!(n−m− s)!
e
√
−1[(2r−m)kp+(2s−n+m)kq ]θ,

sinm(kpθ) sinn−m(kqθ)

=
1

2
√
−1)m

(e
√
−1kpθ − e−

√
−1kpθ)m

1

(2
√
−1)n−m

(e
√
−1kqθ − e−

√
−1kqθ)n−m

=
(−1)

n

2

2n

m∑

r=0

n−m∑

s=0

m!

r!(m− r)!

(n−m)!

s!(n−m− s)!
(−1)−r−se

√
−1[(2r−m)kp+(2s−n+m)kq ]θ,

therefore, we have

limT→∞
1
T

∑T−1
t=0 xm

t+px
n−m
t+q =

{
1
2n

∑m
r=0

∑n−m
s=0

m!
r!(m−r)!

(n−m)!
s!(n−m−s)!δ0,(2r−m)kp+(2s−n+m)kq (m,n : even)

0 (otherwise)
, (67)

limT→∞
1
T

∑T−1
t=0 ymt+py

n−m
t+q =

{
(−1)

n
2

2n

∑m
r=0

∑n−m
s=0

m!
r!(m−r)!

(n−m)!
s!(n−m−s)!(−1)−r−sδ0,(2r−m)kp+(2s−n+m)kq (m,n : even)

0 (otherwise)
.(68)

We further have

Cov[Xm
t+p, X

n−m
t+q ] = 〈Xm

t+pX
n−m
t+q 〉 − 〈Xm

t+p〉〈Xn−m
t+q 〉

=







1
2n

∑m
r=0

∑n−m
s=0

(
m
r

)(
n−m

s

)

δ0,(2r−m)kp+(2s−n+m)kq

−
(

(m−1)!!
m!!

)2

(m,n : even)

0 (otherwise)

.(69)

(70)

A sum of contributions for r = m/2 and s = (n − m)/2 in Eq. (70) is

equivalent to ( (m−1)!!
m!! )2. If Eq. (60) has other solutions than r = m/2 and

s = (n − m)/2, then the covariance positively increases. Therefore, we could
prove Cov[Xm

t+p, X
n−m
t+q ] ≥ 0.

We also have

Cov[Y m
t+p, Y

n−m
t+q ] = 〈Y m

t+pY
n−m
t+q 〉 − 〈Y m

t+p〉〈Y n−m
t+q 〉

=







(−1)
n
2

2n

∑m
r=0

∑n−m
s=0

(
m
r

)(
n−m

s

)

(−1)−r−sδ0,(2r−m)kp+(2s−n+m)kq

−
(

(n−m−1)!!
(n−m)!!

)2

(m,n : even)

0 (otherwise)

.(71)
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Fig. 5 shows covariance between Xm
t+p and Xn−m

t+q , and between Y m
t+p and

Y n−m
t+q . It is found that Cov[Xm

t+p, X
n−m
t+q ] shows non-negative values, and that

Cov[Y m
t+p, Y

n−m
t+q ] shows non-positive values. We found that Cov[Xm

t+p, Y
n−m
t+q ]

takes the same non-positive value as Cov[Y m
t+p, Y

n−m
t+q ] for p 6= q from Figs. 3

and 5. The reason is because cosm(kpθ) sinn−m(kqθ) and sinm(kpθ) sinn−m(kqθ)
have the same area to the x-axis, but cosm(kpθ) cosn−m(kqθ) is different from
them as shown in Fig. 4.

A sum of the contributions for r = m/2 and s = (n − m)/2 in Eq. (71) is

equivalent to ( (n−m−1)!!
(n−m)!! )2. Since Cov[Y m

t+p, Y
n−m
t+q ] is less than zero from the

numerical simulation, for solutions other than r = m/2 and s = (n − m)/2 of
Eq. (60), it should satisfy that a sum of negative contributions is greater than
a sum of positive contributions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

θ

cos4(θ)sin6(2θ)
cos4(θ)cos6(2θ)
sin4(θ)sin6(2θ)

Figure 4: The wave forms of cosm(kpθ) sinn−m(kqθ), sinm(kpθ) sinn−m(kqθ),
and cosm(kpθ) cosn−m(kqθ) for p = 0, q = 1, n = 10, and m = 4.

Therefore, it is suggested that ΨXX(u, v) 6= ΨY Y (u, v) 6= ΨXY (u, v) for
q 6= p from numerical simulation. This also implies that three types of two-
dimensional Bessel functions are not equivalent;

Jp,q
cc (u, v) =

1

2π

∫ 2π

0

e
√
−1(u cos(pθ)+v cos(qθ))dθ, (72)

Jp,q
sc (u, v) =

1

2π

∫ 2π

0

e
√
−1(u sin(pθ)+v cos(qθ))dθ, (73)

Jp,q
ss (u, v) =

1

2π

∫ 2π

0

e
√
−1(u sin(pθ)+v sin(qθ))dθ. (74)
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Figure 5: Scatter plots of Cov[Xm
t+p, X

n−m
t+q ] and Cov[Y m

t+p, Y
n−m
t+q ] in terms of n

at k = 2 and p = 0, (a) q = 1, (b) q = 2, (c) q = 3, (d) q = 4, (e) q = 5, and (f)
q = 6. Unfilled squares represent theoretical values of Cov[Xm

t+p, X
n−m
t+p ], filled

squares numerical values of Cov[Xm
t+p, X

n−m
t+p ], unfilled circles theoretical values

of Cov[Y m
t+p, Y

n−m
t+p ], and filled circles numerical values of Cov[Y m

t+p, Y
n−m
t+p ].

6 Conclusion

We studied two-dimensional chaotic maps on the unit circle, which is an ex-
tension of the Chebyshev maps to two-dimensional map on the unit circle. We
examined correlational properties of this two-dimensional chaotic map. We gave
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analytical forms of higher-order moments. Furthermore, we derived the charac-
teristic function of both simultaneous and lagged ergodic densities. We found
that these characteristic functions are given by three types of two-dimensional
Bessel functions. We proved four theorems and proposed two conjectures as
follows:

Theorems:

1. The higher-order covariances between xt and yt shows non-positive values
for integers n and m (0 ≤ m ≤ n):

Cov[Xm, Y n−m] ≤ 0. (75)

2. The higher-order covariance between xt and xt shows non-negative values
for integer n and m (0 ≤ m ≤ n):

Cov[Xm, Xn−m] ≥ 0. (76)

3. The higher-order covariance between yt and yt shows non-negative values
for n and m (0 ≤ m ≤ n):

Cov[Y m, Y n−m] ≥ 0. (77)

4. The higher-order covariance between xt+p and xt+q (p 6= q) shows non-
negative values for integer n and m (0 ≤ m ≤ n):

Cov[Xm
t+p, X

n−m
t+q ] ≥ 0. (78)

Conjectures:

1. The higher-order covariances between xt+p and yt+q (p 6= q) shows non-
positive values for integers n and m (0 ≤ m ≤ n):

Cov[Xm
t+p, Y

n−m
t+q ] ≤ 0. (79)

2. The higher-order covariance between yt+p and yt+q (p 6= q) shows non-
positive values for n and m (0 ≤ m ≤ n):

Cov[Y m
t+p, Y

n−m
t+q ] ≤ 0. (80)

Therefore, we can generate antithetic sequences as x0, y0, x1, y1, . . . , xt, yt, . . .
or y0, y1, y2, . . . , yt, . . . obtained from Eq. (4). Asymmetric features between
cosine and sine functions were elucidated. Using the proposed two-dimensional
chaotic map, we can generate antithetic pseudo random sequences for Monte
Carlo integration.
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