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Abstract

This article investigates correlational properties of two-dimensional
chaotic maps on the unit circle. We give analytical forms of higher-order
covariances. We derive the characteristic function of their simultaneous
and lagged ergodic densities. We found that these characteristic functions
are described by three types of two-dimensional Bessel functions. Higher-
order covariances between x and y and those between y and y show non-
positive values. Asymmetric features between cosine and sine functions
are elucidated.

1 Introduction

Knowledge on solvable chaos is useful for designing random number genera-
tors [1l 2, Bl 4] and Monte Carlo integration [5]. The idea of applying chaos
theory to randomness has produced important works recently [6] [7, [8,[9]. Geisel
and Fairen analyzed statistical properties of Chebyshev maps [10]. They showed
the mixing properties and higher order moments with higher-order characteris-
tic functions. Gonzalez and Pino proposed a pseudo random number generator
based on logistic maps [I1]. Collins et al. [I2] have applied the logit transforma-
tion to the logistic map variable for producing a sequence with a near Gaussian
distribution. These solvable chaotic properties enable us to design and employ
chaos for application purposes.

First, let us consider maps in the form of Chebyshev polynomials of degree
k

Tip1 = Tr(ty), (1)

which map the interval [—1, 1] onto the same interval. The first few polynomials
are explicitly T1(z) = x, Ta(x) = 22% — 1, and T3(z) = 423 — 3. Since, there is
permutability of the Chebyshev polynomials, T (T;(x)) = Tri(x), Eq. ) can
be expressed as

Ty = Tkt (ZE()) (2)
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It was shown by Adler and Rivlin that Chebyshev maps with & > 2 are er-

godic and strongly mixing. This map dynamics has the invariant measure

p(de) = m/cllm_—wz. Geisel and Fairen shows that the characteristic function of

the Chebyshev maps can be expressed as Bessel function [I0]. They further
considered the higher-order characteristic function. Following their strategy, we
consider the characteristic function of two-dimensional solvable chaotic maps
on a unit circle. We further calculate the higher-order covariance based on the
characteristic function.

This article is organized as follows. In Sec. Bl we introduce two-dimensional
chaotic maps on a unit circle. In Sec. [3] we show that simultaneous covariance
among two variables is independent. In Sec. M we derive an analytical form
of higher-order covariance among two variables. In Sec. Bl we compute higher-
order covariance among two variables with lags. Sec. [6]is devoted to concluding
remarks.

2 Two-dimensional solvable chaos

In this article, we consider two-dimensional maps on a unit circle. Suppose that
2z = x; + v/—1y; denotes a complex number, where z; is a real number and
y+ is an imaginary part at step t (¢ = 0,1,...). Then, we define the complex
dynamics as

Zep1 = 27, (3)
where k is an integer. We can also express Eq. @) as
Ti+1 = Pk(ilft, yt) (4)
Y1 = Qr(ze,yr)
where Py (x,y) and Qk(z,y) are defined as

($+\/__1y)k = Pk(xvy)'i_\/__le(xvy)? (5)

2?4+ = 1L

—~
D
=

The first few polynomials are explicitly given by Pi(z,y) = z, Q1(z,y) = v,
Py(z,y) = z? — yQ, Q2(z,y) = 22y, Ps(z,y) = z? — 3Iy27 Qs(z,y) = 3I2y - 3,
Py(z,y) = 2* — 62%9y% + 94, Qu(x,y) = 423y — 42>, Ps(z,y) = 2° — 1023y +
S5zyt, Qs(z,y) = bty — 1022%y® + 5, Ps(w,y) = 28 — 152%y? + 1522y* — o5,
Qs(x,y) = 625y — 2023y3 + 623>, Pr(x,y) = 27 — 212%y? + 3523y* — TayS, and
Q7(x,y) = Taby — 3521y + 21225 — 2”.

In general, Py(z,£v1 —2?) = Ti(x) is satisfied. Specifically, Q(z,y) for
odd ordered k is equivalent to Qr(++/1 — y2,y) = —Tk(y).

If we set an initial condition z9 = xg + v/—1yo on the unit circle |zg| = 1, 2
is also mapped on the unit circle. In this case, Eq. (Bl can be rewritten as

exp(v/—10)" = exp(kfyv/—1), (7)



where 6 denotes the argument of (x,y) on the two-dimensional plane. It is
convenient to represent the polynomial Py(x,y) and Qx(z,y) in the form

Py(cosf,sinf) = cos(kf) <
Qr(cosf,sinf) = sin(k6) (8)

Fig. M shows a trajectory of (z,y;) for k = 2. The value at each step stands on
the unit circle.
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Figure 1: 800 steps of a trajectory of the two-dimensional chaotic map for k = 2.
The initial value is given by (o, yo) = (—0.820000, 0.572364).

By introducing 6; as the argument of z;, we have
Oip1 = kb, (9)
The solution of Eq. (@) can be written as
0, = k'0o, (10)

by using 6y, denoted as the argument of zy. Therefore, z; = x; + v —1y; is
rewritten as

2z = cos(k'0p) + v/ —1sin(k'0y) = exp(k'0pv/—1). (11)
Eq. () is ergodic and has the constant invariant density pe(0) = 7= (0 <
0 < 2m) since Eq. (@) is a Bernoulli map on mod 27.
Transforming the orthogonal coordinate (x, y) into the polar coordinate (r, 6)
by x = rcosf and y = rsinf, we have pr(r) = 6(r — 1). Therefore, the joint



invariant density of x and y can be described as

pxy(x,y) = pe(0)pr(r) g((z’;)) = 6(2“7T%1)7 (12)

where 6(+) represents Dirac’s §-function. The marginal density in terms of x is
given by

1
px(z) = /_1PXY(CC7y)dy

1t 5(\/x2+y2—1)d
2 N Y

1 Vel 5(t)
B ?/m_l t+1)2— a2
- 1
on/1—a%

In the same way, we obtain

1
py (y) = /_1 pxy (z,y)dz = W%—yz (13)

Note that px (z) and py (y) are the same as the ergodic density of the Chebyshev
maps.

3 Simultaneous covariance

Next, let us consider auto-correlations of x and y and cross-correlation between
x and y. Obviously, mean values of x and y are given as zero.

T—1 1 1
1 T
lim — Ty = x x)dx = ————dz =0, 14
T—}OOT; t /1 pX( ) /_1 7T\/1_I2 ( )

T—1 1 1
1 Y
lim — » y; = / ypy (y)dy = / ————dy =0. (15)
TewT; ! 1 1/l —y?

We shall introduce four types of correlations:

T—1 1 1
. 1
exx(m) = A ZIthHT = /ldx/ldya?Pk o0 Py(x,y)pxy(z,y)
t=0 - - Y
(16)
1 T-1 1 1
cyy(r) = Jlim > iy :/1611?/1dnyko~-~0Qk(x,y)pxy(x,y)
oo _ _ ~—_—————
t=0

T



(17)

T-1 1 1
. 1
exy (1) = Tlgn Tthyt-i-r:/1dx/1dwako"'oQk(xay)pXY(xay)
S _ _ ————
=0
(18)
1 T-1 1 1
eyx(r) = lim szmw:/ dx/ dyy Py o -+ o Py(z,y)pxy (z,y)
o0 =0 -1 -1 —V—’T
(19)

Transforming the orthogonal coordinate (z,y) into the polar coordinate
(r,0), we can calculate Eqs. ([I6) to (I9) as

exx () = % 0% cosfcosk™0dl = %61);@7 (20)
cyy(r) = % 0% sin fsin k"0d0 = %511167 (21)
exy () = % 027f cosfsink™0df = 0 (22)
cyx(t) = % 0% sinf cosk™0df = 0 (23)

These are extensions of Chebyshev maps derived by Geisel and Fairen to the
two-dimensional map [10]. Therefore, the auto-correlations of x and y decay 0
for 7 > 1, and the cross-correlations between = and y are zero. Furthermore, the
correlation between z; and Z;,, where ~ is denoted as the complex conjugate of
-, is also zero,

T—1
. 1
Thj};o T ZO ZtZppr = CX)((T) — ny(T) =+ v —1(ny(7') + ny(T)) =0. (24)

Note that Egs. 20) to (Z3)) are derived by means of the permutability of z*
and the orthogonality between Py(z,y) and Qg (z,y). Clearly, from Eq. ([B) we
can prove the permutability of z¥ such as (2%)! = 2%, For k > 1 and | > 1, we
also have the orthogonal relations among Py (z,y) and Qg(z,y)

1 1 1 2w 1
/ da:/ dyPr(z,y)Pi(z, y)pxy (z,y) = o cos(k) cos(10)d0 = =y,
1 -1 ™ Jo 2
(25)
1 1 1 2w 1
[ o [ avouw e poxyey) = oo [ sin(ko)sin6)a = 3o,
—1 -1 ™ Jo
(26)
1 1 1 2
/ dx / dyQx(w, ) Pu(w, y)pxy (,y) = o [ sin(kt)cos(10)dd =0
—1 -1 0
(27)



4 Simultaneous higher order covariance

Let us consider the characteristic function of the simultaneous joint density
pxv(z,y), defined as

T-1

1
_ : - V=T(uzt+vyt)
B = fim 7
=0
B / / eﬂ(ux+vy)ﬂXY(I,y)d$dy- (28)
Inserting Eq. (I2) into Eq. (28]), we have
1 [ Vit —1
Su) = - [ Vet S WE LY 1) g

2r J_ /12 + y2

/% do /Oo rdrem(“”s””sm@)w
0 0

2mr

1 2T

- eﬁ(u0059+vsin9)d9 — Jé’l(u,v), (29)
27 0

where JP(u, v) is defined as

27
Jrzz,q(u, ’U) — i em(ucos(p9)+vsin(q0)—n9)d9' (30)

™ Jo

This is similar to the two-dimensional Bessel function which was studied by
Korsch et al. [I3], however, it is a bit different from it. They define the two-
dimensional Bessel functions with three integer indices n, p, and ¢ as

i oV —L(usin(pf)+usin(gd)—nb) 19 (31)

T o r

In his definition, the two-dimensional Bessel function consists of two sine func-
tions. However, in our definition this consists of cosine and sine functions.
Clearly, both the two-dimensional Bessel functions satisfy

Jot (u,0) = Jo(u), J3H(0,0) = Jo(v), (32)
Jo! (u,0) = Jo(u), Jo(0,v) = Jo(v), (33)

where J, (u) is the Bessel function defined as

1 i ;
Jn(u) eﬁ(n@—usln@)de' (34)

:% .

In the one-dimensional case, Eq. ([29)) is equivalent to the characteristic
function of Chebyshev polynomials, which is derived by Geisel and Fairen [10].



We can further expand ®(u,v) in terms of u and v,

oo /_ n 27
O (u,v) = S (v=1) / (ucosf +vsinf)"dd
0

2T — n!

1 = (V=D & m
= — ( ) Z ( " )umvnm/ cos™ @sin" "™ 0d6.
0

27 n! m
n=0 m=0

Therefore, we have

=
(XY =l S gy
R
= / dz / dyz™y" " pxy (. y)
1 27
= — cos™ @sin" "™ Adh. (0 < m < n). (35)
27T 0
We also have the equality
/2 1 1T(p)I(
2p—1 - 2g—1 _ _ p q)
cos 0 sin 0d6 = =B(p,q) = = ———=, 36
/0 R P =5 L(p+aq) (36)

where B(a,b) denotes the beta function, defined as

1
Bla,b) = / (1 - )P, (37)
0
and T'(a) represents the gamma function, defined as
I'(a) = / P s (38)
0

Inserting Eq. (B6) into p = m/2 +1/2 and ¢ = (n — m)/2 + 1/2 and using
symmetry of cosine and sine functions and I'(n 4+ 1) = n!, we obtain

27L(Z+1) = nll (n,m: even) (39)

o (2= tHp(24l) (m—1)!(n—m—1)!!
<men7m> —
0 (otherwise)

Hence, the characteristic function of pxy (x,y) is described as

< "N (u?)™ (w?)n
B, v) = 7;)(—1) 2o m)1(2n — 2m)12n)ll’ (40)

This is a natural extension of the Bessel function of degree 0 to the two-
dimensional case,
o~ (=)

Jo(z) = Z e (41)



Since we can further calculate the m-th order moment of z; and the n —m-th
order moment of y; as

1 1

(xm = / d / dye™ oy (2,1)
—1 —1

1 27 m

= — cos™ 0do = % (1 : even) (42)
o2 )y 1o (m:odd) ’
and
1 1
(yr=m) = / dz / dyy" " pxy (z,y)
—1 -1
1 27 (n—m—1)! _ .
= — sin"fm 6‘d9 = (n—m)” (n e even) ’ (43)
27 Jo 0 (n —m :odd)
where m!! =2-4-6---m for even m and m!! =1-3-5---m for odd m, we get
Cov[X™ Y™™ = (X™Y" ™) — (X")Y™™™)

_ (mil)!!szn!!imil)” {1 - m!!(:ﬁm)!!} (m,m: eVen)(44)
0 (otherwise)

Here, we consider the negativity of even ordered moments. Hammersley sug-
gested that antithetic variables are effective for variance reduction in Monte
Carlo integrations [14]. The antithetic-variates method permits estimates through
the use of negative correlated random variables faster than independent random
variables. Let us confirm the sign of Eq. (@4]). We get

nl! (2)!
L = = 1_(%)!("—7”)!

(45)

I
—_
|
7N
SRINE
N——
IN
o

since from the definition of combination, we have
) = % > 1. (46)
(%)

( I(#5)!

The equality is satisfied if and only if m = 0 or m = n. Note that Eq. (44 is
independent of a value of k.

Therefore, Eq. (#4]) implies that x; and y; do not have any correlations for
the odd-ordered moments, however, do have a negative covariance for the even-
ordered moments. Fig. 2shows the relationship between n and Cov[X™, Y™~ ™].
It is confirmed that the covariance monotonically increases and approaches to
zero as n increasing.

SRINTE



—m

Furthermore, we calculate covariance between z}* and z}
yi* and y;' """, From Eqs. @2) and (43), we have

, and between

Cov[X™, X"~™ = Cov[Y™, Y™™
Q%K Z )_( Z;L ) ( nn;;n )} >0 (n,m:even)
= 2 2 2
0 (otherwise)

(47)

The non-negativity of Eq. (1) is proven as follows. Let us consider the case
that n is even. From

(1+x)n:{(1+x)%}2, (48)

one has

n

§0<;)xm:(go<i>xm)2 (49)

Comparing x™’s coeflicient, we get the following inequality

(n)=(

IS RIS
~
¥

(50)

Therefore, we obtain
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5 Higher order covariance with lags

More generally, we can introduce a characteristic function of the joint density
between z7, and y;'r "

\I]XY(U, ’U) = lim — Z eF(U$'+P+UUt+q)

T—oo T

- <exp(\/_—1<upko---opk<x,y)+vc2ko---oQk<x,y)>)>

q

- /dx/ dyexp(VT(u P oo Pulayy) +0Qu 00 Qula,y)) pxy (2:9)

ZD q

u cos(kP vsin(k9 kP k4
_ % VT cos(0) Fusin(K0) g — TR ()

(52)
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Figure 2: The relationship between n and Cov[X™, Y™™ for k = 2.

Similarly to ®(u,v), from the expansion in terms of v and v, we obtain

T-1 1 1
3 1 m n—m
Jim 7S ettt = [ de [ dyPioro Be)@uo o Qulnpoxy(ay)
+=0 —1 —1 M ;
1 2
= — cos™ (kPO) sin™ " (k0)d6. (53)
2w 0
By using

cos™ (kPO) sin™ """ (k10)
_ i(emwe I 1 (eV/"Tk' _ o—V=TKIOn—m

2m (24/—1)n—m
_ 1 i nim(_l)n—m—s m! (n — m)‘ e\/—1[(27‘—771)1<:p-i-(2s—n-i—m)kq]e
2n(y/=1)n—m £ rl(m —r)! sl(n —m — s)! ’
(54)
and )
1 ™
— —lafgg = § 55
o (55)
we obtain
: 1 — m n—m
LR DL
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1)z m n—m m n—m)! —s
% Z’I‘ZO ZS:O r!(mir)! s!((n—mzs)! (_1) 601(2T*m)kp+(25*"+m)kq
= (m,n : even)

0 (otherwise)
(56)
Since we further have
1 1 m
(Xity) = /,1 dx/4 dy [Lk 2 —_— ° Py(e, y)} pxy (@:y)
P
1 27
= 5 cos™ (k*0)do
™ Jo
_ (mn:!l!)!! (m : even) (57)
0 (m:odd) ’
and
1 1 n—m
<yt73r;m> = / dx/ dy {Qk 0---0 Qk(iﬂay)} pxy(@,y)
_1 1 N——
q
1 2w
= 5 cos" " (k0)do
T Jo
(n=—m-1Ul —m:
_ T (n — m : even) 7 (58)
0 (n —m: odd)
we get

COV[XtT—p’ Yt’-ll-;m] = <Xﬁi-pyt7-l|:1m> - <Xﬁp><yt1-li:1m>

_1= m n—m m n—m _s
( 1%"2 ZT:OZS:O ( r )( s >(_1) 50,(2r—m)kp+(25—n+m)kq

- (m;!)!!(!sl—;?;l)” (m,n : even)

0 (otherwise)
(59)
Kohda et al. showed that the higher-order covariance of Chebyshev maps have

no correlation [I5]. We use their derivation in our case. According to Kac’s
statistical independence [16] when in Eq. (B9)

@2r—m)kP +2s—n+m)k?=0, 0<r<m;0<s<n-—m) (60)

holds for any kP and k? if and only if » = m/2 and s = (n — m)/2, kP and k¢
are called linearly independent. Then z7}, and y;', ™ are statistically indepen-
dent [I5].

Let consider the case that m and n are even. From elementary facts about
the theory of numbers, we know that

N=k+4+r (0<r<k), (61)

11



where N is a natural number, and k, e and r are non-negative integers. In the
case that 2r —m >0, 2s —n+m < 0, and p < g we have

@2r—m)k? + 2s—n+m)k? = {2r—m)+ (2s —n+m)k?TP}LKP
[ +7) = (B 4+ P3P
(K 47" — kTP — JRTP)EP . (62)

Therefore, if [(2r —m)/k] =0, [(2s —n+ m)/k] = 0, and e; = ez + ¢ — p hold
then (2r — m)kP + (2s — n + m)k? = 0 is satisfied for integers r and s other
than r = m/2 and s = (n —m)/2. When m > k, and n — m > k, we have
[(2r—m)/k] =0 and [(2s —n+m)/k] = 0. Therefore, m > k°* and n—m > k2
would be satisfied. Namely, when n < k® + k2 = k°2(k97P + 1), 27}, and
Yiyrq  are statistically independent. This implies that ¢ — p goes infinity, 27},
and y;" " become statistically independent in an exponential manner.

Fig. [B shows Cov[Xﬁp,}Q’j_qm] for (p,q) = (0,1), (0,2), (0,3), (0,4), (0,5),
and (0,6). As shown in figures, we found that the covariances decrease as |p — |
increasing. The range of the covariances approach to zero as ¢ increasing.

Obviously, Eq. (@0) has solutions r = m/2 and s = (n — m)/2. A sum of
the contributions for r = m/2 and s = (n —m)/2 in Eq. () is equivalent to
% Since Cov[X/%,, Y, ;"] is less than zero from the numerical
simulation, for solutions other than » = m/2 and s = (n — m)/2 of Eq. (@0),
it should satisfy that a sum of negative contributions is greater than a sum of
positive contributions.

We may consider two types of second-order characteristic functions with lags.
Note that Geisel and Fairen [10] considered a similar second-order characteristic
function for the Chebyshev maps. Their characteristic function corresponds to
U xx(u,u) in our definition.

T—1
\IJXX(U/,'U) = lim — Z V=T1(uZ iy p+vTt4q)

2
_ eV~ 1(ucos(kP0)+vcos(k90)) 19 (63)
1 v
Uyy(u,v) = lim —E eVt tee)
1 27 . i
_ L[ v Tusin(ere)+usin(96)) 4 (64)

2

Similarly to ¥ xy (u,v), from the expansion in terms of v and v, we obtain

oo % n

) = Z( )Xt+pr+qm> mynm - (65)
n=0 m=0
oo % n

vt = Y S (0 ) v 60
n=0 m=0

12
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Figure 3: Scatter plots of Cov[X[} ),
k:2andp:(), (a)q:l, (b)q:

Y/1,"] in terms of n (0 < m < n) at
2,(c)g=3,(d) ¢g=14,(e) g =5, and

(f) ¢ = 6. Filled squares represent theoretical values, and filled circles values

obtained from numerical integration.

where

1 T—-1
m n—m\ __ 1 - m n—m
= lhm E x x
< t+p“ttt+q > T oo T poart t+p~it+q

| Tl
m n—m\ __ 1 m n—m
YY) = Tlggo T Z YitpYttq
t=0

2T

1
= — cos™ (kPO) cos" ™™ (k10)d0,
27 0

1 2T

— [ sam(kP0) sin" ™ (k90)d0.
27 0
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By using
cos™ (kPO) cos" "™ (k10)

_ i(e\/?lkpeJre—mkpe)m (eV/=Tk | o—V=TKIOn—m

2m 2n7m
B 1 m n—m m) (’n, — m)' V—=1[(2r—m)kP+(2s—n+m)k?]0

sin™ (kP6) sin”™ "™ (k96)
1 1
V—1kP0 _ —+/—1kPO\m V—=1k10 _ —+/—1k?0\n—m
2\/__1)171 (e ¢ ) 2y —T)=—m (e € )

_ % Z Z (n— m)! (_1)—r—seﬁ[(zr—m)ku@s—mm)kﬂe
2 2 A= |

therefore, we have

n—m __
limr oo 31—y TiipTivg =

n—m)!
b Zr 02 Tv(m oy Su((n m)s)|5 0,(2r—m)kP+(2s—n+m)ka (M, 7 : even)
0 (otherwise)

-m __
im0 7 T Et 0 YltpYirg =

n—m)! —r—s
- 2" Z’I" 0 Zs 0 ri(m— r)! s!((nfmzs)! (_1) 60:(27‘_m)kp+(25_"+m)kq (m’n : even) (
0 (otherwise)
We further have
COV[Xﬁp7X?+qm] = <XﬁpXZl+qm> <Xﬁp><X?+qm>
n—m
2” r= 0 E ( ) ( s ) 60,(2T7m)kp+(2sfn+m)kq
— 2 69
—(%) (m,n : everg) )
0 (otherwise)
(70)
A sum of contributions for r = m/2 and s = (n — m)/2 in Eq. (@) is
equivalent to ((mn—”l!)!!>2. If Eq. (60) has other solutions than r = m/2 and
s = (n —m)/2, then the covariance positively increases. Therefore, we could
prove COV[Xter, X "= 0.
We also have
Cov[Y [ Y1y = (VI V™) — (Y (V™)
_ m o an—m n—m s
( 21722 Zr:O 25:0 ( r ) ( s )(_1) 60,(2r7m)kp+(2sfn+m)kq
= 2
_((?;Tn;)ll?”) (m,n : eve
0 (otherwise
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Fig. [ shows covariance between X and X;\ ™, and between Y/}, and
Yy, It is found that Cov[X[%} , X' "] shows non-negative values, and that
Cov[Y/},, Y;,”'] shows non-positive values. We found that Cov[X;"},, Y, "]
takes the same non-positive value as Cov[Y;},, Y, ™] for p # ¢ from Figs.
and[Bl The reason is because cos™ (kP8) sin™ =™ (k46) and sin™ (kP6) sin™ ™ (k416)
have the same area to the x-axis, but cos™(kP#) cos™ ™ (k1) is different from
them as shown in Fig. @

A sum of the contributions for » = m/2 and s = (n — m)/2 in Eq. () is
equivalent to (%)2 Since Cov[Y;7,,Y/},™] is less than zero from the
numerical simulation, for solutions other than » = m/2 and s = (n — m)/2 of
Eq. (60), it should satisfy that a sum of negative contributions is greater than
a sum of positive contributions.

1 R
\ cos; (B)sin (20) ——
| cos"(B)cos(28) ;
0.8 [ | sin"(6)sin°(26) ]
0.6
04 1
02t |
0 i

Figure 4: The wave forms of cos™(kP#)sin"~ "™ (k?6), sin™(kPO)sin"~ " (k?0),
and cos™ (kP@) cos" ™ (k490) for p=0, g =1, n =10, and m = 4.

Therefore, it is suggested that Uxx(u,v) # Uyy(u,v) # Uxy(u,v) for
q # p from numerical simulation. This also implies that three types of two-
dimensional Bessel functions are not equivalent;

2
Jpa (u7 ’U) — 2i / erl(u cos(pf)+v cos(q@))da7 (72)
T Jo
2T
Jféq (’U,, ’U) _ 2i / eﬁ(u sin(pf)+v cos(q0))d9, (73)
T Jo
2T
Jf‘;q (u7 ’U) — 2i em(u sin(p)+v sin(qG))de- (74)
T Jo
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Figure 5: Scatter plots of Cov[X7",, X} "] and Cov[Y;},, Y\, ™] in terms of n
atk=2andp=0,(a)g=1,(b) ¢=2,(c) ¢g=3,(d) ¢ =4, () ¢ =5, and (f)
q = 6. Unfilled squares represent theoretical values of Cov[X}} , X;'y"], filled
squares numerical values of Cov[ X/}, X' "], unfilled circles theoretical values

of Cov[Y,},, Y, "], and filled circles numerical values of Cov[Y,",, Y, "]

6 Conclusion
We studied two-dimensional chaotic maps on the unit circle, which is an ex-

tension of the Chebyshev maps to two-dimensional map on the unit circle. We
examined correlational properties of this two-dimensional chaotic map. We gave
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analytical forms of higher-order moments. Furthermore, we derived the charac-
teristic function of both simultaneous and lagged ergodic densities. We found
that these characteristic functions are given by three types of two-dimensional
Bessel functions. We proved four theorems and proposed two conjectures as
follows:

Theorems:

1. The higher-order covariances between x; and y; shows non-positive values
for integers n and m (0 <m < n):

Cov[X™, Y™™ <0. (75)

2. The higher-order covariance between x; and z; shows non-negative values
for integer n and m (0 < m < n):

Cov[X™, X" ™] > 0. (76)

3. The higher-order covariance between y; and y; shows non-negative values
fornandm (0 <m <n):

Cov[Y™, Y™™ > 0. (77)

4. The higher-order covariance between 4, and z¢1q (p # ¢g) shows non-
negative values for integer n and m (0 < m < n):

Cov[X[?, X7 > 0. (78)

Conjectures:

1. The higher-order covariances between x;4, and ¢4 (p # ¢) shows non-
positive values for integers n and m (0 < m <n):

Cov[X[?, Y1 < 0. (79)

2. The higher-order covariance between vy, and yi4q (p # ¢) shows non-
positive values for n and m (0 < m < n):

Covly{™ . Y,12™] < 0. (80)
Therefore, we can generate antithetic sequences as o, Yo, T1, Y1, - - -, Tt, Yt, - - -
Or Y0,Y1,Y2,---Yt, ... obtained from Eq. (@). Asymmetric features between

cosine and sine functions were elucidated. Using the proposed two-dimensional
chaotic map, we can generate antithetic pseudo random sequences for Monte
Carlo integration.
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