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Chaotic Method for Generating -Gaussian
Random Variables

Ken Umeno and Aki-Hiro Sato

Abstract—This study proposes a pseudorandom number gen-
erator of -Gaussian random variables for a range of values,

, based on deterministic chaotic map dynamics.
Our method consists of chaotic maps on the unit circle and map
dynamics based on the piecewise linear map. We perform the
-Gaussian random number generator for several values of and
conduct both Kolmogorov–Smirnov (KS) and Anderson–Darling
(AD) tests. The -Gaussian samples generated by our proposed
method pass the KS test at more than 5% significance level for
values of ranging from to 2.7, while they pass the AD test
at more than 5% significance level for ranging from to 2.4.

Index Terms—Chebyshev polynomials, ergodic theory, map
dynamics, pseudorandom number generator, -Gaussian distribu-
tion.

I. INTRODUCTION

T HE -Gaussian distributions have been studied in a wide
variety of fields from natural sciences to social sciences.

They have been applied in thermodynamics, biology, eco-
nomics, and quantum mechanics. The generating mechanism
is still an open question, but several mechanisms that have
been shown to produce -Gaussian distributions are known,
such as multiplicative noise, weakly chaotic dynamics, corre-
lated anomalous diffusion, preferential growth of networks, and
asymptotically scale-invariant correlations [1]. In the heavy-tail
domain ( ), the -Gaussian distribution is equivalent
to the Student’s -distribution.
In the context offinance, the -Gaussian distribution (
) is referred to as aStudent’s distribution [2].This is commonly
used in finance and risk management, particularly to model con-
ditional asset returns of which the tails are wider than those of
normal distribution. The distribution is also known as Pearson
Type-II (for compact support ( ) and Type VII (infinite sup-
port ( ) [3]. For example, Bollerslev used the Student’s to
model the distribution of the foreign exchange rate returns [4].
Bening and Korolev provide an instance where the distribution
is appropriate as a model, i.e., the case of random sample sizes
[5]. Vignat and Plastino obtained similar results [6]. Other work
attempts to show the -Gaussian distribution as an attractor in the
context of dependent systems [7]. Moreover, Umarov et al. con-
sider a -extension of -stable Lévy distribution [8].
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More recently, -Gaussian distributions have been derived
from the maximization of nonextensive entropy [1] and studied
in the context of the generalization of Gauss’ Law of Errors [9].
-Gaussian distributions can be derived from an infinite normal
mixture with an inverse gamma distribution. This concept is
known as superstatistics in nonequilibrium thermodynamics
[10]. -Gaussian distributions also appear as unconditional dis-
tributions ofmultiplicative stochastic differential equations [11].
Recently, the generalized Box–Muller method (GBMM) was

proposed by Thisleton et al. [13]. Their method uses transfor-
mation including the -logarithmic, sine, and cosine functions
in terms of uniform random variables. Here, based on the er-
godic theory [14] of dynamical systems, we propose a family
of chaotic maps with an ergodic invariant measure given by
-Gaussian density. Ulam and von Neumann considered the
logistic map in the late 1940s, and
found its randomness [15]. One of the authors (K. Umeno) pro-
posed chaotic mechanism to generate power-law random vari-
ables [16]. This method can generate power-law random vari-
ables in the Lévy stable regime from the superposition of the
random variables. One of the authors (A.-H. Sato) also proposed
multiplicative random processes to generate power-law random
variables [17]. Currently, we can use the map dynamics to de-
sign random sequences with an explicit ergodic invariant mea-
sure more precisely [18], [19].
In this paper, we propose a method to generate -Gaussian

random variables based on deterministic map dynamics. Our
method is based on ergodic transformations on the unit circle
and a map composed of the piecewise linear map with both the
-exponential and -logarithmic function.Thismethod is a direct
method different from that in [13] and [16] and can generate
-Gaussian randomvariables for including infinite
variance and infinite mean regimes. We generate -Gaussian
random variables for several cases of and conduct statistical
testing bymeans of analytical cumulative distribution functions.

II. REVIEW OF THE GBMM

The zero-mean normal -Gaussian distribution parameter-
ized by is described as

(1)
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where is the beta function, which is defined as

(2)

For , symmetric distributions with compact support

ranging from to appear. Specifically, the nor-
malized Wigner distribution is obtained at . In the case
of , (1) has heavy tails and ,
where is related to the degree of
freedom of the Student’s -distribution. is coincident with
the tail index of the complementary cumulative distribution of

. This also gives an existence condition in the heavy-tail
regime of the -Gaussian distribution.
Firstly, let us start our discussion from the GBMM proposed

by Thistleton et al. [13]. To introduce their method to generate
-Gaussian random variable, we define a -analog of both ex-
ponential and logarithmic function.
Definition 1: Suppose the 1-D ordinary differential equation

(3)

The solution is given as

(4)

We call the solution -exponential function. Obviously,
one has

(5)

Definition 2: We define the inverse function of (4)

(6)

which we call the -logarithmic function. Clearly, we get

(7)

Definition 3: The GBMM [13] is given by transformations
from i.i.d. uniform random variables and ranging from 0
to 1:

(8)

Proposition 1: The joint probability density of and in (8)
is given by

(9)

Proof of Proposition 1: From (8), we obtain

(10)

where we used the equality

(11)

Note that (10) is recognized as a 2-D -normal distribution,

(12)

where and . This is properly parameterized
with each marginal -variance equal to one.
Proposition 2: The marginal distribution of is given by

(13)
where . Hence, in (8) gives a -Gaussian
random variable.

Proof of Proposition 2: Integrating (9) in terms of , we
obtain (13). In the case of , we obviously obtain

(14)

In the case of , we have
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(15)

Using the equality among beta function and gamma functions

(16)

where the gamma function is defined as

(17)

and ,

(18)

Since we have
, we get

(19)
Therefore, (15) can be rewritten as

(20)
Setting , we obtain

(21)
In the case of , we obtain the joint density

has a compact support ranging from to :

(22)

Similarly to the case of setting , we obtain

(23)

where .
Fig. 1 shows the distribution of (9) for several cases of . The

distribution is the spinning object. The marginal distribution in
terms of is also equivalent to (13).

III. MAP DYNAMICS

Adler and Rivlin considered , where
, , defined by Chebyshev polynomial of de-

gree [20], where is an integer. Clearly, is permutable
. They proved that for the er-

godic invariant measure of the map dynamics
has an explicit density function invariant measure

.
More generally, let us extend the Chebyshev polynomial to a

2-D case as [21].
Definition 4: and are given as real and imag-

inary parts of binomial expansion

(24)

where the equality is necessary in order to obtain
from this expansion. Here, in this definition, we used the

Eular equality

(25)

This is the Chebyshev polynomial of degree
. The first few polynomials are explicitly given by

, , ,
, , ,

, ,
, ,

,
,

, ,
, and

.
Definition 5: For , we define the map dynamics

(26)

(27)
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Fig. 1. Three-dimensional plots of joint density in terms of and for (a)
, (b) , (c) 0.1, (d) 0.6, (e) 1.1 ( ), (f) 1.6 ( ), and

(g) 2.1 ( ).

on the unit circle . The set of variables
is uniformly distributed on the unit circle if we set an initial

condition of on the unit circle. We set as an arbitrary
value in and is given by .
Lemma 1: The joint density of ergodic invariant measure for

and follows

(28)

Proof of Lemma 1: In addition to , we
introduce , where and ,

. From the equality given in (25), the angular of
follows the map dynamics

(29)

which is ergodic and has an ergodic density function [12]

(30)

Transforming the orthogonal coordinate into the polar
coordinate by and , we have

. Since ons has ,
, , and , the Jacobian

matrix is expressed as

(31)

Therefore, the joint density of the ergodic invariant measure of
and can be described as

(32)

Lemma 2: The density functions of ergodic invariant measure
of (26) and (27), respectively, have the form

(33)

(34)

Proof of Lemma 2: From (32), we can calculate
and as the marginal distribution in terms of and .
Integrating (32) with respect to and , we, respectively, obtain

(35)

(36)
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Definition 6: As an alternative method for generating
-Gaussian random variables, we propose chaotic maps based
on the following map dynamics:

(37)

where

(38)

(39)

assuming

(40)

(41)

where is an th-order piecewise linear map defined as

...

...

(42)

For example, in the case of , (42) gives the tent map

(43)

In the case of , (42) is expressed as

(44)

The number of iteration is an integer greater than or equal to
1. The order of the piecewise linear map is an integer greater
than or equal to 2. By using the product among , , and ,

(45)

we can also obtain 2-D deterministic dynamics. The random
seed of this pseudorandom generator is given by , where
we set as .
Note that factor 2 in front of -exponential function in (43)

should be replaced with a value both smaller than and close to
2, such as 1.99999, for the round error correction in the case of
actual numerical computation.
Lemma 3: The density of ergodic invariant measure of

follows the one-side distribution

(46)

Proof of Lemma 3: The density of the ergodic invariant
measure [12] of the piecewise linear map

(47)

follows the uniform distribution
independently of and . Since we obtain

from the transformation in (40), we have

(48)

In this derivation, we used the equality introduced in (11).
Theorem 1: The joint density of ergodic invariant

measure of map dynamics (45) is the -Gaussian distribution
which is the same as (9) and given by

(49)

Proof of Theorem 1: By using (28) and (46), the joint den-
sity of the ergodic invariant measure in terms of
and is given as

(50)

Theorem 2: The marginal density of is a 1-D -Gaussian
distribution:

(51)
where . Hence, sequences generated
from the maps in Definition 1. are random numbers sampled
from a -Gaussian distribution, where .

Proof of Theorem 2: From Proposition 2, the marginal dis-
tribution of is the same functional form as (13).
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IV. NUMERICAL SIMULATION

Fig. 2 shows sample paths for several values of . As shown
in these figures, they seem to be from a trapped random walk to
Lévy walk as is increasing. Fig. 3 shows the return maps be-
tween and . They show the determinism of the proposed
random number generator. The return map of at and

shows the functional form of the map function introduced
in (38). holds at . Since one has

(52)

the Lyapunov exponent of , defined as

(53)

is computable. Here, is the Kolmogorov–Sinai entropy.
The relation holds in 1-D case by the Pesin identity.
Independently of the initial conditions and the param-
eter , it is numerically confirmed that the Lyapunov exponent
approaches at and . This is consistent with

the theoretical value of chaotic map, which is conjugate with
a diffeomorphism for the tent map. More generally, the Lya-
punov exponent approaches to in a general case of
. This iterated map is deterministic; however, the autocorre-

lation function of the productive variable

(54)

decays 0 for from the orthogonality of the Chebyshev
polynomials. Obviously, the expectation value of is

(55)

Since due to the independence of and , we have

(56)
Fig. 2. Sample path of the map dynamics at , , and for (a)

, (b) , (c) 0.1, (d) 0.6, (e) 1.1 ( ), (f) 1.6 ( ), and
(g) 2.1 ( ).
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Fig. 3. Return map between and for (a) , (b) , (c) 0.1,
(d) 0.6, (e) 1.1 ( ), (f) 1.6 ( ), and (g) 2.1 ( ). The solid
curve represents for each value of .

we obtain the autocorrelation of as

(57)

Note that is not finite for since the variance
of -Gaussian distribution is not finite for and it
is undefined for . In this derivation, we used the per-
mutability and the orthogonality of the Chebyshev polynomials

(58)

In the same way, it can be proved that the auto-correlation func-
tion of the productive variable also decays 0 for .
The cumulative distribution of generated by (37), (38), and

(45), defined as

(59)

can be expressed as

(60)
where is the regularized incomplete beta function,

(61)

and is the complementary error function defined as

(62)

We compare the cumulative distributions of obtained from
(37), (38), and (45) with (60). Since we normally generate
-Gaussian random variables from the given , for prac-
tical usage, we need the inverse relation between and :
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. Fig. 4 shows the empirical complemen-
tary cumulative distributions of

(63)

computed from 10 000 samples for . Com-
paring the empirical distribution with the theoretical one, we
found that they are very close for each parameter .
We conducted the Kolmogorov–Smirnov (KS) and the

Anderson–Darling (AD) tests in order to verify whether the
empirical distributions of sequences generated by our proposed
method are convergent to the -Gaussian distributions. It is
known that AD test is suitable for checking the goodness-of-fit
for heavy-tailed distributions [22]. Assuming samples of

, the test statistics are given as

(64)
where an empirical cumulative distribution function,
and is a weight function. In the case of , gives
a KS test statistic and in the case of , gives an
AD test statistic.
Table I shows the best -values of both KS and AD tests for

several values at , , and . The -value of KS
test is greater than 0.1 for . Therefore, the null hypoth-
esis that the sequences are not samples from the theoretical dis-
tribution is not rejected at more than 5% statistical significance
for values from 1 to 2.6 in KS test. The degree of freedom
goes to 0 as approaches 3. For ( ), both the
proposed procedure and GBMM does not work since degree of
freedom is very small. The -value of AD test is greater than
0.1 for . Since AD test is sensitive for tail events, the
null hypothesis is not rejected from the value of smaller than
KS test values. Table II shows the -values of both KS and AD
tests for several values at , , and . The ten-
dency of -values is very similar to ones at , , and

. The KS test passes at more than 5% statistical signifi-
cance for values ranging from to 2.6 in KS test. The same
is true for in the case of AD test.
While GBMM [13] is based on transformation of uniform

random variables, our proposed method here is purely mechan-
ical generation of -Gaussian distribution based on ergodic
theory. Thus, no random number is assumed for the generations
of -Gaussian distribution. Its implementation is very simple
as shown in the example code in Appendix A. Fig. 6 ( ,

, and ) and Fig. 5 ( , , and ) show
the best -values of (a) KS test and (b) AD test obtained from
10 000 samples in 100 trials with the proposal and the GBMM
for several . The best -values provided by the proposed
method are same as ones by the GBMM for many cases.

V. CONCLUSION

We proposed a pseudorandom number generator of
-Gaussian random variables for a range of values,

, based on deterministic map dynamics. Our
method consists of ergodic transformation on the unit circle
and map dynamics based on the piecewise linear map. We

Fig. 4. Complementary cumulative distribution functions of at , ,
and for (a) , (b) , (c) 0.1, (d) 0.6, (e) 1.1 ( ),
(f) 1.6 ( ), and (g) 2.1 ( ). Red curves represent empirical
distributions, and green ones represent theoretical distributions.

conducted both KS and AD tests for random number sequences
generated by GBMM and our proposed chaotic method for
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TABLE I
BEST KS AND AD STATISTICS OBTAINED FROM 10 000 SAMPLES IN 100

TRIALS FOR SEVERAL AT , , AND -VALUES OF BOTH KS
AND AD TESTS ARE SHOWN

several values of . The -Gaussian samples passed the KS test
at the 5% significance level for , and passed the AD test
at the 5%significance level for .

APPENDIX
SOURCE CODE

We show a C source code for our proposed method for ,
, and . The code is exhibited in order to demonstrate

the algorithm, and is not optimal for speed. The algorithm is
implemented in four functions. The first two functions compute
-exponential and -logarithmic functions. The next function
setseed_qnormal( , ) sets two random seeds and , and
qnormal( ) calls the iterated map to generate -Gauss random
variables by our proposed method.

#include

#include

#include

TABLE II
BEST KS AND AD STATISTICS OBTAINED FROM 10 000 SAMPLES IN 100

TRIALS FOR SEVERAL AT , , AND -VALUES OF BOTH KS
AND AD TESTS ARE SHOWN

#include

double ;

double {

if( ){

return( );

}

else{

return( );

}

}

double {

if( ){

return( );

}
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Fig. 5. (a) Best -values of both (a) KS and (b) AD tests obtained from 10,000
samples in 100 trials with our proposed and GBMM for several at ,

, and .

else{

return( );

}

}

void {

;

;

;

}

double Q8(double , double ){

return(

);

}

double P8(double ){

return(

);

}

double {

Fig. 6. (a) Best -values of both (a) KS and (b) AD tests obtained from 10 000
samples in 100 trials with our proposed and GBMM for several at ,

, and .

return( );

}

void qnormal(double ){

double ;

;

;

;

;

;

}

int main( ){

double ;

int ;

if( ){

;

exit(0);

}
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;

;

;

;

for( ){

;

;

;

;

}

}
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