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Abstract

Recently, chaos theory has developed a new area that is relevant to
future radio spectrum management. Through the development of ap-
plications of chaos theory to communications systems, it turns out that
a multi-channel chaotic spectrum spreading can be seen as a fusion of
the CDMA technologies and the OFDM technologies, namely, a fu-
sion of the two important communications technologies to attain high
spectrum efficiency. Namely, CDMA and OFDM can be naturally uni-
fied into a single chaos communications technologies sharing the same
radio spectrum with high spectrum efficiency. One important impli-
cation of this chaotic communications approach to future spectrum
management is that we can monitor the spectrum usage and a new
transmitter of potentially many different types of CDMA /OFDM mix-
ing method in a same frequency band can be added with few degrada-
tion if it exploits chaotic signal modulation technique whose spectrum
spreading signals are orthogonal to existing mixed signals. The theo-
retical basis of the effect of chaos can be explained by our recently pro-
posed ”Chaotic Analysis” which is to expand arbitrary given signals in
terms of basis functions derived from complete orthonormal functions
associated with Lebesgue spectrum of underlying chaotic dynamical
system, which means that chaotic analysis can be another view of
Fourier analysis, as the fundamental basis of spectrum management.
We discuss the impact of chaos technologies to spectrum management
from the above viewpoint and its relation to realization of market effi-
ciency for future potential spectrum trading. We conclude our recom-
mendation that a sufficient number of spectrum sharing technologies



must be considered before putting spectrum on the market.In my pre-
sentation, we also present a model for spectrum licensing model with
reselling incentives to give a suitable unpredictability of services and
strategy of network operators and MVNOs.

1 Introduction of Chaos Approach

Spectrum spreading with chaotic sequences are concerned with new direction
of key technology of spread spectrum sharing [2, 5, 9, 10, 13]. One of the
remarkable features of chaotic spreading sequences is that there are poten-
tially infinitely many different sequences that can form a unique ensemble
according to the ergodic invariant measure. Furthermore, we can perform an
exact statistical analysis for system performance of communication systems
based on such chaotic spreading sequences by the ergodic principle[18]. In
code-division multiple-access (CDMA) communication systems, orthogonal
property between spreading sequences is an essential property for spectrum
sharing. There has already been an extensive study about correlation prop-
erties of linear feedback shift register sequences such as m-sequences, Gold
sequences and Kasami sequences[11]. The spectrum efficiency of chaotic
spreading can be analyzed by ”chaotic analysis” [16] which expands any given
signal in Hilbert space in terms of complete orthogonal elements, which rep-
resent a chaotic element of signal. The following is the outline of the present
paper. In Section 2, we shortly review the basis of our chaos approach. In
Section 3, we review a chaotic analysis which gives another measure of radio
spectrum. In Section 4, we provide an analysis of correlation properties of
two signals which will be the basis of SNR analysis of Section 5. In Section
6, we review the core part of code design of our chaos approach to con-
struct infinitely many modulations to share the same frequency spectrum
band. Another implication of chaos analysis is related to constructing mar-
tingale fluctuation for market efficiency of spectrum trading. In Section 7, we
discuss this matter and the relation between market efficiency of spectrum
trading driven by chaotic fluctuation with a martingale property and chaotic
spectrum spreading. Concluding remarks are given in the final section.



2 Ergodic Dynamical Systems: The basis of
Chaos Approach

We consider a dynamical system X,,,; = F(X,,) given by a mapping function
F : Q) — Q on a state space (). Let us assume that a mapping F' is ergodic
with respect to an invariant probability measure du(x) = p(z)dz with p(z)
being a continuous density function p : 2 — R. This means that the measure
du(x) = p(x)dz is invariant under time evolution of F' and, furthermore, is
absolutely continuous with respect to the Lebesgue measure on 2. In this
case, according to the Birkhoff Ergodic Theorem [18], for any integrable func-
tion A(z), an average over time limy_,o + S1vy" A(X;) equals the average
over the state space [y A(z)p(z)dz for almost every Xy with respect to the
probability measure p(x)dz. This means that an average value of a limit
sequence

A(Xy), A(X), A(X), -+, A(Xy) - - - (1)
can be computed by the following ergodic equality

Jim ¥ A = (4) = [ Alw)p(o)ds ®)

for almost all Xj. Since, the ergodic invariant measure p(x)dz is realized for
almost all initial conditions on €2, we can consider (A) as an ensemble average
of A, where the initial conditions of each sample are distributed according to
the invariant probability measure p(z)dz. Thus, we can evaluate an ensemble
average for successively and finitely generated observable A(X;) = A(X;)
[4]. Suppose N successive observations, A(X;),p(X;), ¢ = 1,---,N, of
quantities A(z) and a density function p(x) have been stored. Note that

1N1

Z A(X;) — (A =0, (3)

where the expectation of A denoted by ((A)) means an ensemble average
with respect to the initial conditions X, with a sampling measure p(z)dz.
It is more important to consider ensemble-average fluctuation given by the
expected value of the square of the error

o) = (i T A - (AP )
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As shown in Appendix A of Ref. [4], this expected value o(V) is explicitly
written in terms of sum of two-point correlation functions of A; = A(X;) as
follows:

1

7(N) = A2 = (AP + = 20 - D){(Aady) - (AP} (5)

o(N) is composed of the statistical variance term

1 2 2
= U4 = (A7 (6)

which purely depends on the form of the integrand A and the dynamical
correlation term

os(N)

) = 5 (0= ) (o) — (41, @

which depends on the chaotic dynamical systems X, = F(X,) utilized as
random-number generators and the integrand functions A(x).

3 Chaotic Analysis

In this section, we explain a chaotic analysis by using Lebesgue spectrum’s
orthonormal functions and a basic tool of computing two-point correlation
function of variables generated by ergodic dynamical systems is given. First,
we consider a dynamical observable ¢(z) € Lo. The Ly space is a Hilbert
space with a scalar product defined by

(u,v) = /Qu(ﬁ)v(x)p(x)dx (8)

Such a Hilbert space has finite or countably infinite orthonormal basis func-
tions {¢;} of Ly which satisfy the following relation

(Dis @) = 0ij- (9)

When such orthonormal basis is complete, then for any ¢(x) € Ly(Q), ¢(x)
can be uniquely expanded as follows.

8(0) = 3 a6 (o). (10
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Chaotic Analysis is nothing but an expansion of a given signal in Eq.10 by
the orthogonal signals ¢;(x) related to chaotic dynamical systems. Here,
Lebesgue spectrum of ergodic dynamical systems is introduced by an or-
thonormal basis {@» ;}rea jez for the Hilbert space L, having a special com-
posite property [1]. Here, A labels the classes splitting the orthonormal basis
and 7 which is an element of the set = of non-negative integers labels the
functions within each class. Each class has infinitely many functions and the
cardinality of A is uniquely determined by the underlying ergodic dynamical
system X, = F(X,,). If the cardinality of A is infinite, the corresponding
Lebesgue spectrum is called infinite Lebesgue spectrum. The special property
of Lebesgue spectrum is given by the following composite property

Prjo F(x) = ¢y jsi(x), for VA€ AVje=. (11)

This means that if ¢, is given, all the other basis functions {¢, ;},>1 can
be generated from it simply by using compositions with power of F. By
construction, each function is orthogonal both to every other function in the
same class, and to every function in every other class. Furthermore, we can
define the projected Hilbert space Ly(\) which corresponds to the class A € A
of the Lebesgue spectrum as follows. Let us consider a function ¢, € Ly given
by

Oa(7) = D anidai(2), (12)

§=0

where N
<¢,\, ¢)\> = Z |CIJ,\’]‘|2 < Q. (13)

j=0

Such a set of functions {¢,(z)} characterize a special class of L, and we
denote it Ly(N). Lo(\) can be seen as a projected Hilbert space of Ly. An
important property of Ly(A) is again the composite property such that if
¢(z) € Lo(N), then ¢ o F(z) € Lo(A). By the orthogonal property of the
Lebesgue spectrum, each function of Ly(\) is orthogonal to every other func-
tion in every other projected Hilbert space Ly(\ # A). Let us consider an
orthogonal complement M+ € Ly of M = @,c) La()\), where each function
of M+ is orthogonal to every function of M = @,c, L2(A\). In Appendix,
such orthonormal bases related to ergodic dynamical systems, where the or-
thogonal complement M* corresponds to the set of constant functions will



be constructed based on the well-known classical Chebyshev orthogonal poly-
nomials. In general, the following relations

Ly=M@PM", M“*t=M (14)

hold.

Thus, the orthogonal basis {¢y j}rea jez together with a function ¢y €
M+ forms a complete orthonormal basis of Ly; i.e., each function ¢(x) € Ly
is uniquely expanded by

d(x) = aodo(x) + D da(x) = aodo(z) + > i ax;jox;(x). (15)

AEA AEA j=0

The example of orthonormal functions of L, is

oo

o(z) =D _(1/2) Ty (), (16)

J=1

which is well-known to be nowhere differentiable continuous functions in L,
and T), is a m-th order Chebyshev polynomial function. The fact that or-
thogonal basis may be nowhere differentiable continuous functions represents
a difference between chaotic analysis and Fourier analysis, while their repre-
sentation capacities of signals are the same as the class of functions in the
Hilbert space.

4 Correlation Properties

Let us consider a normalized integrand B(x) € Ls. By the above property
of Ly(\), B(x) has the following unique expansion:

=D D ar;h(2), (17)
AEA j=0
we can compute the [-shift correlation function (ByB;) as follows:

(BoBy) = Z Z ax,jox; (v Z Z ax,;x,j+1())

€A j=0 A€A j=0

= Z Z X m A\ m—1- (18)

AEA m=I



Here, we use the orthogonal property between every pair of functions in every
different projected Hilbert spaces Lo(A) and Ly()\'). This exact formula 18 of
correlation functions can be exploited to give the optimal spreading sequence
for asynchronous CDMA systems [13, 15].

5 SNR Analysis

Since spectrum efficiency is closely related to SNR (signal-to-noise-ratio) by
the Shannon theory, we consider an ensemble average of SNR (signal-to-noise-
ratio) for chaotic spreading sequences generated by ergodic dynamical sys-
tems with Lebesgue spectrum. Let us consider two different sequences

B(X1), B(X3),- -, B(Xy) (19)

and
B(Yl)aB(Y2)a"'aB(YN) (20)

generated by an ergodic dynamical system x,,1 = F(z,), where X; € Q
and Y} € ) are independently chosen initial conditions and B € M =
@sea L2(A). Note that in this case, B(x) € M has the unique expansion
(17) in terms of orthonormal functions with Lebesgue spectrum. Let us as-
sume that the average power of sequences divided by the code length N has
a constant value Pp:

(P = (S B(X) = N || B pla)do
= {Az;\ io(a,\,m)Q}N = PN, (21)

where {a, ;} are real coefficients in the Lebesgue spectrum expansion given in
Eq. (17). Now, we can safely assume that the average value of each sequence
is zero as

<; B(X;)) = 0. (22)

This condition is automatically satisfied if the orthogonal complement M=t
of M corresponds to the set of constant functions as an orthonormal system



constructed in Appendix. The ensemble average of [-shift auto-correlation
functions is explicitly given by

<ZB(XJ‘)B(XJ‘+Z)> = Z i Xm0 m—1- (23)

j=1 AeA m=l
The mean interference noise (Pn) is 0 as derived by the

N

(S B(X)B(Y) = N [ B)pa)ds- [ Bly)plydy=0. (24
j=1

Here, we assume that the initial values X; and Y] are chosen independently
and they are distributed according to the invariant probability density p(x)
and p(y). By Eq. (5) in Section 2, the mean variance of the interference
noise can also be estimated as follows:

(Pr?) = ([3 BOG)BE)P) = (3 (axm)?}2N +9

j=1 AEA m=0
> Py N,
where N
0=2 Z(N - l)(z Z a)\7ma)\7m_l)2 2 0. (25)
=1 AEA m=I

From Eq. (23), the minimum bound of the mean interference noise ( interfer-
ence variance ) is attained when the all of the mean [-shift auto-correlation
functions are zero. Such conditions which give the minimum mean interfer-
ence noise are realized when

<¢)\(X0)¢,\(Xl)> == Z i aA,ma)\,m,l =0. VI Z 1. (26)

AEA m=I

B(z) satisfying the Eq. (26) are illustrated by the following examples:
B(z) = ¢x(x), (27)
B(z) = agx, 0(x) + bdx, 1(x) + cor, 0(7) — ddr, (), (28)

where ab = cd.
Thus, not only elementary white random sequences generated by ergodic
dynamical systems (27) but also the suitable sum of cchaotic sequences (28)
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are the optimal ones for synchronous CDMA. We assume K users have dif-
ferent initial conditions and correspondingly different chaotic spreading se-
quences. Thus, with the use of the Gaussian assumption for K — 1 interfer-
ence noises (K is large number), we finally obtain the mean SINR (signal to
interference noise ratio) denoted by R (K) as follows:

chaos
Rehaos(K) = o - o
chaos (Pn2)(K — 1) \/(POQN +0)(K — 1)
N

< K_1_ Rehaos*:
On the other hand, the mean SNR in synchronous CDMA for Gold se-

quences of length N obtained by Tamura, Nakano, and Okazaki[8] is given
by

N3
R K)= .
Gold () \1 (K —1)(N?2+N —1)
Thus, we can say that the mean SNRs between optimal chaotic spreading

sequences and Gold sequences(optimal binary sequences) have the following
inequality:

(29)

Raold(K) <R
Note that the Gold sequences is asymptotically optimal:

lim RGold(K)/Rchaos* (K) =1. (31)

N—o00

chaos*(K) for N < oo. (30)

A set of several periodic orbits of the chaotic sequences generated by the
second order Chebyshev polynomial demonstrates this type of SNR improve-
ment over the optimal binary sequences [9]. The present analytical result of
SNR with chaotic spreading sequences can be considered as a generalization
of the former analytical result in the case of Chebyshev ergodic maps [10].

6 Code Design

How many chaotic codes can we generate to use spectrum spreading se-
quences coexisting in a same frequency band? We consider that one bit
of data is coded into one spreading sequences obtained by direct product



of s(> 1) periodic sequences of period N of chaotic dynamical systems as
follows.
T=yY1® D Ys. (32)

Here, by direct product of chaotic sequences, we mean that each component
x(i) of the obtained chaotic spreading sequences (x(1),..,2(N)) is given by
the products of s chaotic sequences:

S

(i) = ]:[1 yi (1), (33)

where y;(i) is the i-th (1 < i < N) component of the j-th (1 < j < s)
chaotic spreading sequence y; = (y;(1),v;(2),---,y;(N)) generated by a spe-
cific chaotic dynamical system

yii +1) = Fi(y; () ,5=1,---,s. (34)

We note here that periodic sequences of such chaotic dynamical systems can
also been seen as typical ergodic sequences since the ergodic equality holds
in the infinite period limit with respect to the ergodic invariant measure for
Axiom A dynamical systems (strongly chaotic dynamical systems) [12].

The advantage of this type of direct-product sequence construction based
on multiple chaotic sequences is that we can enlarge the family size of spread-
ing sequences so that we can enhance the communication security compared
to the conventional one-dimensional binary sequences. Note while the set of
s-product of 1 binary sequences at s > 2 is also the set of binary sequences,
the set of s-product of chaotic sequences is not equal to the set of original
chaotic sequences. The set of s-product chaotic sequences is not closed un-
der the sequence product operation. Orthonormal basis functions of such
s-product sequences are given by the product bases:

¢)\,j(y) = G100, (Y1) D200, (Y2) - - Ds n.5 (Us)- (35)

Such product basis functions in s variables are easily checked to satisfy the
relation of orthonormal basis functions with Lebesgue spectrum for the s-
product transformation:

PN, j 4+ 1) = bia o Fiyn) - dsai 0 Filys)
=ox, 5 +1F®) (36)
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Thus, we can also give the mean SNR for this s-product sequences in terms
of the coefficients of Lebesgue spectrum expansion. Each typical s-product
basis function can be a sequence generator for attaining the optimal SNR
as shown in the preceding section. Thus, chaotic spectrum spreading ap-
proach with this kind of chaotic code generation can add potentially many
orthogonal sequences to an existing frequency band with graceful degrada-
tion. Furthermore, multi-channel CDMA with complex chaotic spreading
was recently shown to be regarded as a natural extension of OFDM commu-
nications system by considering a two-dimensional chaotic dynamical system
on the unit circle, which represents a complex spectrum spreading sequence
with constant power [17]. In other words, CDMA and OFDM can be unified
in single communications systems with complex chaotic spreading sequences.
This implies that spectrum usage of CDMA and OFDM and other spectrum
efficiency technologies can be managed by chaotic analysis of spectrum usage
in a unified way. In this case, this implies that not only Fourier spectrum
but also Lebesgue (chaotic code) spectrum, which can be a new measure of
spectrum management, must be considered to attain the efficient sharing of
the spectrum.

7 Chaos Approach to Market Efficiency of
Spectrum Trading

The fundamental theory of economics and mathematics says that market
efficiency, which can only be attained by unpredictability of trading price
fluctuation with a martingale property, is the pillar hypothesis not only for
conventional market but also for potential future spectrum trading. In par-
ticular, successive price movements are statistically independent fluctuation
with martingale property and a sort of randomness of price fluctuation must
contain as an essential ingredient for the efficient market of potential spec-
trum trading [8]. As is the case of financial engineering which measures the
risk and expectation of stochastic variables by the Monte Carlo method, all
kinds of risk measurements and expectations of chaotic fluctuating variables
can be executed by chaotic Monte Carlo method using ergodic principle [4].
Furthermore, chaos can easily and systematically represent non-Gaussian
fluctuations with broad probability density functions like Levy’s stable law
[7]. Thus, we can manage a chaotic fluctuation in spectrum trading envi-
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ronment, which drives the market to efficient one by the ergodic principle,
and chaotic analysis and we can analytically obtain the statistical evalua-
tion by the same ergodic principle and the chaotic analysis. Thus, it is of
interest to consider the relation between chaotic spectrum spreading technol-
ogy and chaotic market fluctuation. This should be related to the random
property of price fluctuation in market. One can say that this kind of un-
predictability of price fluctuation about spectrum sharing is easily obtained
by considering the potentially infinite variety of chaotic spectrum spreading
modulation methods, since randomness of price fluctuations in market can
naturally considered to be a result of our lack of prediction capacity even
with all information available from the past to the present time. Thus, to
policy makers for spectrum management, we recommend that we prepare
and consider potentially many spectrum sharing technologies as an option of
strategy of spectrum sharing before putting spectrum on the market. There is
a non-negligible possibility that market efficiency of the spectrum commons
trading market can be obtained by a coexistence of potentially many chaotic
spectrum spreading methodologies proven in the preceding sections, where
statistical analysis can be performed by the above chaotic analysis while a
typical price fluctuation and a combination of chaotic spectrum spreading
strategies is essentially unpredictable through potential varieties of the com-
munications methodologies sharing the spectrum.

8 Concluding Remarks

Here, we review the recent developments of employing chaos theory to com-
munications systems towards future spectrum management. First, we pro-
vide the fundamental basis of the development, so called chaotic analysis,
which expand signal in terms of complete orthonormal functions, related to
Lebesgue spectrum of the underlying chaotic dynamical systems with mixing
property. As an example of output of chaotic analysis, ensemble average of
SNR for chaotic spreading sequences are given in terms of the expansion co-
efficients of Lebesgue spectrum of the corresponding ergodic transformation.
For chip-asynchronous CDMA systems, the white random sequences or the
complete orthogonal sequences such as Walsh-Hadamard sequences which are
the optimal for chip-synchronous CDMA cannot be an optimal sequence[5].
However, as shown in [13, 15], it is possible to construct the optimal spread-
ing sequences based on Chebyshev polynomials-type ergodic transformations
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with Lebesgue spectrum for chip-asynchronous CDMA. Chaotic analysis,
which is a general methodology of expansion of given signals in terms of this
kind of complete orthonormal functions have quite a number of applications.
One of possible and important implications of chaotic analysis toward spec-
trum management includes an attainment of market efficiency of spectrum
trading by injecting chaotic fluctuations with martingale property through
potential infinite varieties of spectrum sharing methodologies with chaotic
spectrum spreading sequences. Thus, we recommend that technological op-
tions or strategies for spectrum sharing must not be narrowed and potential
spectrum sharing technologies should be considered as much as we can be-
fore putting spectrum on the market in order to make the spectrum market
efficient. Such potentially infinitely many spectrum sharing technologies can
be easily constructed by chaotic spectrum spreading technologies through
recent studies by many researchers. Thus, our conclusion strongly supports
multi frequency sharing technologies standards in a shared spectrum band
and their coexistence of standard spectrum sharing technologies so that more
operators can participate in the spectrum market and they can select their
own spectrum sharing methodologies out of several standard optional tech-
nologies and the spectrum band.
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A Complete Orthonormal Systems with Lebesgue
Spectrum of Chebyshev Polynomials

In this appendix, we provide a particular class of complete orthonormal basis
functions with Lebesgue spectrum of ergodic dynamical systems. Here, we
consider a dynamical system with a Chebyshev polynomial X, = T,,(X,,) as
chaotic-number generators, where 7),(X) is the p-th order Chebyshev poly-
nomial defined by T,[cos(f)] = cos(pf) at p > 2. Examples of Chebyshev
polynomials are illustrated by

Ti(X) = X, T5(X) =2X* — 1, T3(X) = 4X? - 3X,
Ty(X)=8X"—8X%+1---. (37)

More importantly, it was shown in Ref. [3] that these Chebyshev maps 7,
have mixing (thus, chaotic and ergodic) property with respect to the ergodic
invariant measure m/‘f‘”_? on the domain Q = [—1,1] for p > 2 and they
have Lyapunov exponents Inp. On the other hands, it is well-known that a
system of Chebyshev polynomials constitutes a complete orthonormal system

satisfying the relations

[ o = 6,00 (38)

where 0; ; stands for the Kronecker delta function such that

5y = { 0 il (39)

Let us consider a set of functions {¢g;(x)}qen j>0 Where
q,i(T) = \/Qquf (z) (40)

and A is the set of positive integers ¢(> 1) which satisfy
g mod p#O0. (41)

It is clear to see that the relation for Lebesgue spectrum

Pq,j © Tp = Typi 0 Ty = Typi1 = Py 1 (42)
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holds. Thus, the functional set {¢,;()}4en j>0 satisfies the definition of
Lebesgue spectrum in Eq. (11). Furthermore, since the cardinality of A is
infinite, it has infinite Lebesgue spectrum. It is clear to see the orthonormal
relation

(@q> Pq i) = 0f(g—q')2+(j—i")2}.0- (43)
Thus, the set {¢,,;(2)}qen,j>0 (40) forms an orthonormal basis system. Since
{Tpi (2) Foen >0 = {Ti(2) b1, (44)

and .
/ T, (2) - To(x)p(x)dz = 0 for Vg€ A,Vj € =, (45)

~1

it is shown here that the set {¢g () }4en,j>0 (40) together with the constant
function Ty(z) = 1 can form a complete orthonormal basis of Ly[—1,1]. We
note here the classical fact that the set of Chebyhsev polynomials can form
a complete orthonormal basis of Ly[—1,1].
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